The Utilization of 900 Wp off-grid Solar Power Plant for Product Intensification of a Hydroponics Farmer Group

Authors

  • Rizki Putra Prastio Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-8012-2520
  • Prisma Megantoro Universitas Airlangga, Surabaya, Indonesia
  • Syamsul Arifin Universitas Airlangga, Surabaya, Indonesia
  • Ismayahya Ridhan Mutiarso Universitas Airlangga, Surabaya, Indonesia
  • Ahmad Rahmat Muzadi Universitas Airlangga, Surabaya, Indonesia
  • Firdaus Bima Firmansyah Universitas Airlangga, Surabaya, Indonesia
  • Sigit Dani Perkasa Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.59247/jppmi.v2i8.128

Keywords:

Solar power plant, Hydroponics, UV plastic roof, Grow lights

Abstract

In collaboration with a group of hydroponics farmers, an activity as a part of community service implementation has been carried out in Pasuruan, Eastern Java. The activity aims to develop a 900 Wp solar power plant capable of providing energy for running the essential electrical devices for the hydroponics system uninterrupted. This idea is to resolve the energy issue when the outage occurs. Moreover, the reliance on the public grid also adds additional expense for the electricity bill. Based on the observation, the power plant reliably provides sufficient energy to turn on different hydroponics electrical devices. It can supply energy for 12 hours without charging to activate, in total, 160 Watt of diverse loads all night long. While during the day, solar panels deliver energy for the batteries recharging and the other loads. Some other facilities are also developed in this activity, including UV plastic roof and addition of the grow lights to promote the plants’ growth acceleration. The plastic roof efficiently reduces the sunlight intensity to lower the heat experienced by the plants, transmits specific wavelengths crucial for growth, and prevents the rainwater from entering the nutrient water tank. Meanwhile, the grow lights stimulate faster growth and quickly recover the plants after receiving much heat that causes them to look wilt. As a result, the farmers are now less reliant on the public grid, and the hydroponics system is more weather-resistant.

 

 

Author Biographies

Rizki Putra Prastio, Universitas Airlangga, Surabaya, Indonesia

Robotics and Artificial Intelligence Engineering, Universitas Airlangga, Surabaya, Indonesia

Prisma Megantoro , Universitas Airlangga, Surabaya, Indonesia

Electrical Engineering, Universitas Airlangga, Surabaya, Indonesia

Syamsul Arifin , Universitas Airlangga, Surabaya, Indonesia

Robotics and Artificial Intelligence Engineering, Universitas Airlangga, Surabaya, Indonesia

Ismayahya Ridhan Mutiarso , Universitas Airlangga, Surabaya, Indonesia

Electrical Engineering, Universitas Airlangga, Surabaya, Indonesia

Ahmad Rahmat Muzadi , Universitas Airlangga, Surabaya, Indonesia

Electrical Engineering, Universitas Airlangga, Surabaya, Indonesia

Firdaus Bima Firmansyah , Universitas Airlangga, Surabaya, Indonesia

Electrical Engineering, Universitas Airlangga, Surabaya, Indonesia

Sigit Dani Perkasa , Universitas Airlangga, Surabaya, Indonesia

Electrical Engineering, Universitas Airlangga, Surabaya, Indonesia

References

FAO, FAO in the 21st Century: Ensuring Food Security in a Changing World: Executive Summary, FAO, 2012.

B. Baiyin, K. Tagawa and J. Gutierrez, “Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands,” sustainability, vol. 12, no. 22, p. 9556, 2020.

J. A. Hollingsworth, E. Ravishankar, B. O’Connor, J. X. Johnson and J. F. DeCarolis, “Environmental and economic impacts of solar-powered integrated greenhouses,” Journal of Industrial Ecology, vol. 24, no. 1, pp. 234--247, 2020.

J. Lobillo-Eguibar, V. M. Fernandez-Cabanas, L. A. Bermejo and L. Perez- Urrestarazu, "Economic sustainability of small-scale aquaponic systems for food self-production," Agronomy, vol. 10, no. 10, p. 1468, 2020.

G. L. Barbosa, F. D. A. Gadelha, N. Kublik, A. Proctor, L. Reichelm, E. Weissinger, G. M. Wohlleb and R. U. Halden, “Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods,” International journal of environmental research and public health, vol. 12, no. 6, pp. 6879--6891, 2015.

K. Killebrew and H. Wolff, “Environmental impacts of agricultural technologies,” 2010.

P. H. Gleick, “Roadmap for sustainable water resources in southwestern North America,” Proceedings of the National Academy of Sciences, vol. 107, no. 50, pp. 21300--21305, 2010.

A. Chel and G. Kaushik, “Renewable energy for sustainable agriculture,” Agronomy for sustainable development, vol. 31, no. 1, pp. 91--118, 2011.

L. La Notte, L. Giordano, E. Calabro, R. Bedini, G. Colla, G. Puglisi and A. Reale, “Hybrid and organic photovoltaics for greenhouse applications,” Applied Energy, vol. 278, p. 115582, 2020.

A. M. Garcia, J. Gallagher, M. C. Chacon and A. Mc Nabola, “The environmental and economic benefits of a hybrid hydropower energy recovery and solar energy system (PAT-PV), under varying energy demands in the agricultural sector,” Journal of Cleaner Production, vol. 303, p. 127078, 2021.

A. Waleed, M. T. Riaz, M. F. Muneer, M. A. Ahmad, A. Mughal, M. A. Zafar and M. M. Shakoor, “Solar (PV) Water irrigation system with wireless control,” in 2019 International symposium on recent advances in electrical engineering (RAEE), 2019.

S. Gorjian, F. Calise, K. Kant, M. S. Ahamed, B. Copertaro, G. Najafi, X. Zhang, M. Aghaei and R. R. Shamshiri, “A review on opportunities for implementation of solar energy technologies in agricultural greenhouses,” Journal of Cleaner Production, p. 124807, 2020.

H. Rezk, M. A. Abdelkareem and C. Ghenai, “Performance evaluation and optimal design of stand-alone solar PV-battery system for irrigation in isolated regions: A case study in Al Minya (Egypt),” Sustainable Energy Technologies and Assessments, vol. 36, p. 100556, 2019.

M. Matam, V. R. Barry and A. R. Govind, “Optimized Reconfigurable PV array based Photovoltaic water-pumping system,” Solar Energy, vol. 170, pp. 1063--1073, 2018.

A. Senpinar, “Internet-/Arduino-controlled PV automatic irrigation system for clean environment,” International Journal of Environmental Science and Technology, vol. 16, pp. 5185--5196, 2019.

M. Cossu, A. Yano, S. Solinas, P. A. Deligios, M. T. Tiloca, A. Cossu and L. Ledda, “Agricultural sustainability estimation of the European photovoltaic greenhouses,” European Journal of Agronomy, vol. 118, p. 126074, 2020.

S. Zhang, Y. Guo, S. Li, Z. Ke, H. Zhao, J. Yang, Y. Wang, D. Li, L. Wang, W. Yang and others, “Investigation on environment monitoring system for a combination of hydroponics and aquaculture in greenhouse,” Information Processing in Agriculture, 2021.

B. Bouzidi and P. E. Campana, “Optimization of photovoltaic water pumping systems for date palm irrigation in the Saharan regions of Algeria: increasing economic viability with multiple-crop irrigation,” Energy, Ecology and Environment, vol. 6, no. 4, pp. 316--343, 2021.

M. J. M. Rao, M. K. Sahu and P. K. Subudhi, “Pv based water pumping system for agricultural sector,” Materials Today: Proceedings, vol. 5, no. 1, pp. 1008--1016, 2018.

J. Zheng, F. Ji, D. He and G. Niu, “Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a LED plant factory,” Agronomy, vol. 9, no. 12, p. 875, 2019.

W. Liu, L. Zha and Y. Zhang, “Growth and Nutrient Element Content of Hydroponic Lettuce are Modified by LED Continuous Lighting of Different Intensities and Spectral Qualities,” Agronomy, vol. 10, no. 11, p. 1678, 2020.

P. Pinho, K. Jokinen and L. Halonen, “The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce,” Lighting Research & Technology, vol. 49, no. 7, pp. 866--881, 2017.

R. Arizona, H. Kurnia, E. Elfiano, J. Rahman and S. Kurniadi, "Dissemination of LED Grow Light Radiation Technology to Accelerate Hydroponic Plant Growth in the Sidomulyo Hydroponics Business in Perhentian Marpoyan Village, Marpoyan Damai District, Pekanbaru City," Jurnal Pengabdian dan Pemberdayaan Masyarakat Indonesia, vol. 2, no. 1, 2022.

I. Nasution, A. Munawar, P. Satriyo, H. Gunawan, Y. Yunus and others, “Precision agriculture: automated irrigation system in tandem with solar panels for melon farming cultivation,” IOP Conference Series: Earth and Environmental Science, vol. 644, no. 1, p. 012084, 2021.

S. Siregar, M. I. Sari and R. Jauhari, “Automation system hydroponic using smart solar power plant unit,” Jurnal Teknologi, vol. 78, 2016.

H. Sharma, A. Haque and Z. A. Jaffery, “Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring,” Ad Hoc Networks, vol. 94, p. 101966, 2019.

D. B. Singh, A. Mahajan, D. Devli, K. Bharti, S. Kandari and G. Mittal, “A mini review on solar energy based pumping system for irrigation,” Materials Today: Proceedings, p. Elsevier, 2021.

R. Sigalingging and P. and Honora, “Utilization of solar power as DC water pump movement in hydroponic plants,” IOP Conference Series.Earth and Environmental Science, vol. 260, no. 1, 05 2019.

P. Putera, S. A. Novita, M. I. Hamid and S. Syafii, “Development and Evaluation of Solar--Powered Instrument for Hydroponic System in Limapuluh Kota, Indonesia,” Advanced Science Engineering Information Technology, vol. 5, no. 5, pp. 284--288, 2015.

A. S. Pascaris, C. Schelly, L. Burnham and J. M. Pearce, “Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics,” Energy Research & Social Science, vol. 75, p. 102023, 2021.

C. Gomez, C. J. Currey, R. W. Dickson, H.-J. Kim, R. Hernandez, N. C. Sabeh, R. E. Raudales, R. G. Brumfield, A. Laury-Shaw, A. K. Wilke, R. G. Lopez and S. E. Burnett, “Controlled environment food production for urban agriculture,” HortScience, vol. 54, no. 9, pp. 1448--1458, 2019.

G. E. Hassan, A. H. Salah, H. Fath, M. Elhelw, A. Hassan and K. M. Saqr, “Optimum operational performance of a new stand-alone agricultural greenhouse with integrated-TPV solar panels,” Solar Energy, vol. 136, pp. 303--316, 2016.

Downloads

Published

2022-08-12

How to Cite

Prastio, R. P., Prisma Megantoro, Syamsul Arifin, Ismayahya Ridhan Mutiarso, Ahmad Rahmat Muzadi, Firdaus Bima Firmansyah, & Sigit Dani Perkasa. (2022). The Utilization of 900 Wp off-grid Solar Power Plant for Product Intensification of a Hydroponics Farmer Group . Jurnal Pengabdian Dan Pemberdayaan Masyarakat Indonesia, 2(8), 302–308. https://doi.org/10.59247/jppmi.v2i8.128

Issue

Section

Articles

Most read articles by the same author(s)