Empowerment of mushroom farming communities with iot based monitoring in Karang Kepanjen, Sleman
DOI:
https://doi.org/10.59247/jppmi.v1i5.25Keywords:
Mushroom Farmers, Monitoring; Humidity, TemperatureAbstract
Mugi Barokah “Mushroom Farmer UKM” is located in an agricultural area in Sleman Regency, precisely in Karang Kepanjen Hamlet, Trimulyo Village, Sleman District, Sleman Regency, Yogyakarta Special Region has been conducting mushroom cultivation activities since 2009. Mugi Barokah mushroom cultivation is led by Mr. Agus Arif Effendi. Actually, these SMEs have a large enough market opportunity for mushroom cultivation. However, this opportunity brings consequences and problems, namely the lack of a touch of innovation from the mushroom temperature and humidity monitoring system. The mushroom cultivation treatments they do include adjusting the intensity of the light by installing mosquito nets, adjusting the humidity of the mushroom room by spraying with water and to determine the temperature and humidity in the mushroom room by visual checking. Information about some of the problems faced by mushroom cultivation must of course be addressed as soon as possible as a solution for developing mushroom cultivation businesses. The team that proposes service as part of the community who happens to be involved in the world of education, feels compelled to help provide solutions to the problems faced by the mushroom farmer's business. Through this proposed science and technology activity program and based on the needs analysis that has been carried out, the service team tries to offer solutions to these problems with a touch of science and technology, namely through the main activity of designing remote mushroom monitoring with IoT technology. Temperature monitoring and control tool for mushroom fungus using an Arduino microcontroller, a DH11 sensor for temperature and humidity sensors and using IOT technology for remote monitoring. By using this tool the mushroom fungus can be monitored and controlled remotely using the Android application.
References
M. Yamauchi et al., “Cultivation of oyster mushroom (Pleurotus ostreatus) on fermented moso bamboo sawdust,” J. King Saud Univ. - Sci., vol. 31, no. 4, pp. 490–494, Oct. 2019, doi: 10.1016/j.jksus.2018.04.021.
E. Ivarsson, M. Grudén, J. Södergren, and M. Hultberg, “Use of faba bean (Vicia faba L.) hulls as substrate for Pleurotus ostreatus – Potential for combined mushroom and feed production,” J. Clean. Prod., vol. 313, p. 127969, Sep. 2021, doi: 10.1016/j.jclepro.2021.127969.
M. B. Bellettini et al., “Diseases and pests noxious to Pleurotus spp. mushroom crops,” Rev. Argent. Microbiol., vol. 50, no. 2, pp. 216–226, Apr. 2018, doi: 10.1016/j.ram.2017.08.007.
J. Schildt, M. Rüdiger, A. Richter, D. M. Schumacher, and C. Kürbis, “Investigation on the uptake of ciprofloxacin, chloramphenicol and praziquantel by button mushrooms,” Food Chem., vol. 362, p. 130092, Nov. 2021, doi: 10.1016/j.foodchem.2021.130092.
M. Hultberg, L. Ahrens, and O. Golovko, “Use of lignocellulosic substrate colonized by oyster mushroom (Pleurotus ostreatus) for removal of organic micropollutants from water,” J. Environ. Manage., vol. 272, p. 111087, Oct. 2020, doi: 10.1016/j.jenvman.2020.111087.
J. C. Coetzee and A. Eicker, “First report of Trichophaea abundans and the teleomorph of Peziza ostracoderma associated with mushroom cultivation in South Africa,” South African J. Bot., vol. 60, no. 2, pp. 132–133, Apr. 1994. 10.1016/S0254-6299(16)30645-7.
M. V. A. Pontes et al., “The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates,” Fungal Genet. Biol., vol. 112, pp. 12–20, Mar. 2018, doi: 10.1016/j.fgb.2017.12.004.
S. C. Khoo et al., “Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum,” Chemosphere, vol. 286, p. 131477, Jul. 2021, doi: 10.1016/j.chemosphere.2021.131477.
T. Taparia, E. Hendrix, M. Hendriks, E. Nijhuis, W. de Boer, and J. van der Wolf, “Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles,” Soil Biol. Biochem., vol. 155, p. 108161, Apr. 2021, doi: 10.1016/j.soilbio.2021.108161.
F. Xu, Z. Li, Y. Liu, C. Rong, and S. Wang, “Evaluation of edible mushroom Oudemansiella canarii cultivation on different lignocellulosic substrates,” Saudi J. Biol. Sci., vol. 23, no. 5, pp. 607–613, Sep. 2016, doi: 10.1016/j.sjbs.2015.07.001.
C.-Y. Huang and Y.-J. Chang, “An adaptively multi-attribute index framework for big IoT data,” Comput. Geosci., vol. 155, p. 104841, Oct. 2021, doi: 10.1016/j.cageo.2021.104841.
V. Lakshmikantha, A. Hiriyannagowda, A. Manjunath, A. Patted, J. Basavaiah, and A. A. Anthony, “IoT based smart water quality monitoring system,” Glob. Transitions Proc., vol. 2, no. 2, pp. 181–186, Nov. 2021, doi: 10.1016/J.GLTP.2021.08.062.
M. Alshamrani, “IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 4687–4701, Jun. 2021, doi: 10.1016/J.JKSUCI.2021.06.005.
V. Tanasiev, G. C. Pătru, D. Rosner, G. Sava, H. Necula, and A. Badea, “Enhancing environmental and energy monitoring of residential buildings through IoT,” Autom. Constr., vol. 126, p. 103662, Jun. 2021, doi: 10.1016/j.autcon.2021.103662.
N. Sharma et al., “A smart ontology-based IoT framework for remote patient monitoring,” Biomed. Signal Process. Control, vol. 68, p. 102717, Jul. 2021, doi: 10.1016/j.bspc.2021.102717.
B. Varshini, H. Yogesh, S. D. Pasha, M. Suhail, V. Madhumitha, and A. Sasi, “IoT-Enabled smart doors for monitoring body temperature and face mask detection,” Glob. Transitions Proc., vol. 2, no. 2, pp. 246–254, Nov. 2021, doi: 10.1016/J.GLTP.2021.08.071.
A. I. Paganelli et al., “A conceptual IoT-based early-warning architecture for remote monitoring of COVID-19 patients in wards and at home,” Internet of Things, vol. 18, p. 100399, April 2021, doi: 10.1016/J.IOT.2021.100399.
J. A. Alvarez Aldana, S. Maag, and F. Zaidi, “A formal consensus-based distributed monitoring approach for mobile IoT networks,” Internet of Things, vol. 13, p. 100352, Mar. 2021, doi: 10.1016/j.iot.2020.100352.
N. Al Bassam, S. A. Hussain, A. Al Qaraghuli, J. Khan, E. P. Sumesh, and V. Lavanya, “IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19,” Informatics Med. Unlocked, vol. 24, p. 100588, 2021, doi: 10.1016/j.imu.2021.100588.
D. Mourtzis, J. Angelopoulos, and N. Panopoulos, “Design and development of an IoT enabled platform for remote monitoring and predictive maintenance of industrial equipment,” Procedia Manuf., vol. 54, pp. 166–171, Jan. 2021, doi: 10.1016/j.promfg.2021.07.025.
A. Mahmoudzadeh, I. Azimi, A. M. Rahmani, and P. Liljeberg, “Lightweight Photoplethysmography Quality Assessment for Real-time IoT-based Health Monitoring using Unsupervised Anomaly Detection,” Procedia Comput. Sci., vol. 184, pp. 140–147, Jan. 2021, doi: 10.1016/j.procs.2021.03.025.
E. A. Abioye et al., “IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment,” Inf. Process. Agric., vol. 8, no. 2, pp. 270–283, Jun. 2021, doi: 10.1016/j.inpa.2020.05.004.
A. Shahraki, A. Taherkordi, and Ø. Haugen, “TONTA: Trend-based Online Network Traffic Analysis in ad-hoc IoT networks,” Comput. Networks, vol. 194, p. 108125, Jul. 2021, doi: 10.1016/j.comnet.2021.108125
S. Kim, R. Pérez-Castillo, I. Caballero, and D. Lee, “Organizational process maturity model for IoT data quality management,” J. Ind. Inf. Integr., vol. 26, p. 100256, Aug. 2021, doi: 10.1016/J.JII.2021.100256.
K. Koorapati, R. Pandu, P. K. Ramesh, S. Veeraswamy, and U. Narasappa, “Towards a unified ontology for IoT fabric with SDDC,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6077–6091, May. 2021, doi: 10.1016/J.JKSUCI.2021.04.015.
D. Mrozek, A. Koczur, and B. Małysiak-Mrozek, “Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge,” Inf. Sci. (Ny)., vol. 537, pp. 132–147, Oct. 2020, doi: 10.1016/j.ins.2020.05.070.
V. R. Kebande, P. P. Mudau, R. A. Ikuesan, H. S. Venter, and K.-K. R. Choo, “Holistic digital forensic readiness framework for IoT-enabled organizations,” Forensic Sci. Int. Reports, vol. 2, p. 100117, Dec. 2020, doi: 0.1016/j.fsir.2020.100117.
Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, “A survey of IoT malware and detection methods based on static features,” ICT Express, vol. 6, no. 4, pp. 280–286, Dec. 2020, doi: 10.1016/j.icte.2020.04.005.
F. Hussain Al-Naji and R. Zagrouba, “CAB-IoT: Continuous authentication architecture based on Blockchain for internet of things,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2497–2514, Nov. 2020, doi: 10.1016/J.JKSUCI.2020.11.023.
E. J. Argüello Prada, “The Internet of Things (IoT) in pain assessment and management: An overview,” Informatics Med. Unlocked, vol. 18, p. 100298, Jan. 2020, doi: 10.1016/j.imu.2020.100298.
V. Siddhartha, G. S. Gaba, and L. Kansal, “A Lightweight Authentication Protocol using Implicit Certificates for Securing IoT Systems,” Procedia Comput. Sci., vol. 167, pp. 85–96, Jan. 2020, doi: 10.1016/j.procs.2020.03.185.
X. Yao, F. Farha, R. Li, I. Psychoula, L. Chen, and H. Ning, “Security and privacy issues of physical objects in the IoT: Challenges and opportunities,” Digit. Commun. Networks, vol. 7, no. 3, pp. 373–384, Aug. 2021, doi: 10.1016/J.DCAN.2020.09.001.
S. Torabi, E. Bou-Harb, C. Assi, and M. Debbabi, “A Scalable Platform for Enabling the Forensic Investigation of Exploited IoT Devices and Their Generated Unsolicited Activities,” Forensic Sci. Int. Digit. Investig., vol. 32, p. 300922, Apr. 2020, doi: 10.1016/j.fsidi.2020.300922.
C. Li, L. Mo, H. Tang, and R. Yan, “Lifelong Condition Monitoring Based on NB-IoT for Anomaly Detection of Machinery Equipment,” Procedia Manuf., vol. 49, pp. 144–149, Jan. 2020, doi: 0.1016/j.promfg.2020.07.010.
S. Pasika and S. T. Gandla, “Smart water quality monitoring system with cost-effective using IoT,” Heliyon, vol. 6, no. 7, p. e04096, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04096.
O. Mörth, M. Eder, L. Holzegger, and C. Ramsauer, “IoT-based monitoring of environmental conditions to improve the production performance,” Procedia Manuf., vol. 45, pp. 283–288, Jan. 2020, doi: 0.1016/j.promfg.2020.04.018.
J. Wang, M. Chen, J. Zhou, and P. Li, “Data communication mechanism for greenhouse environment monitoring and control: An agent-based IoT system,” Inf. Process. Agric., vol. 7, no. 3, pp. 444–455, Sep. 2020, doi: 10.1016/j.inpa.2019.11.002.
N. U. Okafor, Y. Alghorani, and D. T. Delaney, “Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach,” ICT Express, vol. 6, no. 3, pp. 220–228, Sep. 2020, doi: 10.1016/j.icte.2020.06.004.
D. Abruzzese et al., “IoT sensors for modern structural health monitoring. A new frontier,” Procedia Struct. Integr., vol. 25, pp. 378–385, Jan. 2020, doi: 10.1016/j.prostr.2020.04.043.
A. D. Juan Carlos et al., “Monitoring system of environmental variables for a strawberry crop using IoT tools,” Procedia Comput. Sci., vol. 170, pp. 1083–1089, Jan. 2020, doi: 10.1016/j.procs.2020.03.067.
I. V. Lokshina, M. Greguš, and W. L. Thomas, “Application of Integrated Building Information Modeling, IoT and Blockchain Technologies in System Design of a Smart Building,” Procedia Comput. Sci., vol. 160, pp. 497–502, Jan. 2019, doi: 10.1016/j.procs.2019.11.058.
A. Xenakis, A. Karageorgos, E. Lallas, A. E. Chis, and H. González-Vélez, “Towards Distributed IoT/Cloud based Fault Detection and Maintenance in Industrial Automation,” Procedia Comput. Sci., vol. 151, pp. 683–690, Jan. 2019, doi: 10.1016/j.procs.2019.04.091.
E. chen, H. Cao, Q. He, J. Yan, and S. Jafar, “An IoT based framework for energy monitoring and analysis of die casting workshop,” Procedia CIRP, vol. 80, pp. 693–698, Jan. 2019, doi: 10.1016/j.procir.2018.12.002.
J. Doshi, T. Patel, and S. kumar Bharti, “Smart Farming using IoT, a solution for optimally monitoring farming conditions,” Procedia Comput. Sci., vol. 160, pp. 746–751, Jan. 2019, doi: 10.1016/j.procs.2019.11.016.
M. S. U. Chowdury et al., “IoT Based Real-time River Water Quality Monitoring System,” Procedia Comput. Sci., vol. 155, pp. 161–168, Jan. 2019, doi: 10.1016/j.procs.2019.08.025.
A. C. Tasong and R. P. Abao, “Design and Development of an IoT Application with Visual Analytics for Water Consumption Monitoring,” Procedia Comput. Sci., vol. 157, pp. 205–213, Jan. 2019, doi: 10.1016/j.procs.2019.08.159.
A. Almeida, R. Mulero, P. Rametta, V. Urošević, M. Andrić, and L. Patrono, “A critical analysis of an IoT—aware AAL system for elderly monitoring,” Futur. Gener. Comput. Syst., vol. 97, pp. 598–619, Aug. 2019, doi: 10.1016/j.future.2019.03.019.
M. S. Siddiqui, A. Rahman, and A. Nadeem, “Secure Data Provenance in IoT Network using Bloom Filters,” Procedia Comput. Sci., vol. 163, pp. 190–197, Jan. 2019, doi: 0.1016/j.procs.2019.12.100.
D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375–385, Sep. 2019, doi: 10.1016/j.inpa.2018.12.003.
B. Satuyeva, C. Sauranbayev, I. A. Ukaegbu, and H. S. V. S. K. Nunna, “Energy 4.0: Towards IoT Applications in Kazakhstan,” Procedia Comput. Sci., vol. 151, pp. 909–915, Jan. 2019, doi: 10.1016/j.procs.2019.04.126.
G. Neagu, M. Ianculescu, A. Alexandru, V. Florian, and C. Z. Rădulescu, “Next generation IoT and its influence on decision-making. An illustrative case study,” Procedia Comput. Sci., vol. 162, pp. 555–561, Jan. 2019, doi: 10.1016/j.procs.2019.12.023.
T. Aladwani, “Scheduling IoT Healthcare Tasks in Fog Computing Based on their Importance,” Procedia Comput. Sci., vol. 163, pp. 560–569, Jan. 2019, doi: 10.1016/j.procs.2019.12.138.
C. Verdouw, H. Sundmaeker, B. Tekinerdogan, D. Conzon, and T. Montanaro, “Architecture framework of IoT-based food and farm systems: A multiple case study,” Comput. Electron. Agric., vol. 165, p. 104939, Oct. 2019, doi: 10.1016/j.compag.2019.104939.
N. Al-Oudat, A. Aljaafreh, M. Saleh, and M. Alaqtash, “IoT-Based Home and Community Energy Management System in Jordan,” Procedia Comput. Sci., vol. 160, pp. 142–148, Jan. 2019, doi: 10.1016/j.procs.2019.09.454.
S. Uma, R. Eswari, R. Bhuvanya, and G. S. Kumar, “IoT based Voice/Text Controlled Home Appliances,” Procedia Comput. Sci., vol. 165, pp. 232–238, Jan. 2019, doi: 10.1016/j.procs.2020.01.085.
G. Zhang, C. Yao, and X. Li, “Research on joint planning method of NB-IoT and LTE,” Procedia Comput. Sci., vol. 131, pp. 985–991, Jan. 2018, doi: 10.1016/j.procs.2018.04.240.
X. Chen, C. Li, Y. Tang, L. Li, and Q. Xiao, “A framework for energy monitoring of machining workshops based on IoT,” Procedia CIRP, vol. 72, pp. 1386–1391, Jan. 2018, doi: 10.1016/j.procir.2018.03.085.
Y. Huang, L. Wang, Y. Hou, W. Zhang, and Y. Zhang, “A prototype IOT based wireless sensor network for traffic information monitoring,” Int. J. Pavement Res. Technol., vol. 11, no. 2, pp. 146–152, Mar. 2018, doi: 10.1016/j.ijprt.2017.07.005.
H. Malik, M. M. Alam, Y. Le Moullec, and A. Kuusik, “NarrowBand-IoT Performance Analysis for Healthcare Applications,” Procedia Comput. Sci., vol. 130, pp. 1077–1083, Jan. 2018, doi: 10.1016/j.procs.2018.04.156.
S. Mukherjee and G. P. Biswas, “Networking for IoT and applications using existing communication technology,” Egypt. Informatics J., vol. 19, no. 2, pp. 107–127, Jul. 2018, doi: 10.1016/j.eij.2017.11.002.
L. Liu, “IoT and A Sustainable City,” Energy Procedia, vol. 153, pp. 342–346, Oct. 2018, doi: 10.1016/j.egypro.2018.10.080.
L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Understanding IoT Systems: A Life Cycle Approach,” Procedia Comput. Sci., vol. 130, pp. 1057–1062, Jan. 2018, doi: 10.1016/j.procs.2018.04.148.
N. Mohamudally and M. Peermamode-Mohaboob, “Building An Anomaly Detection Engine (ADE) For IoT Smart Applications,” Procedia Comput. Sci., vol. 134, pp. 10–17, Jan. 2018, doi: 10.1016/j.procs.2018.07.138.
S. Tedeschi, D. Rodrigues, C. Emmanouilidis, J. Erkoyuncu, R. Roy, and A. Starr, “A cost estimation approach for IoT modular architectures implementation in legacy systems,” Procedia Manuf., vol. 19, pp. 103–110, Jan. 2018, doi: 10.1016/j.promfg.2018.01.015.
B. M. Nguyen, H. Phan, D. Q. Ha, and G. Nguyen, “An Information-centric Approach for Slice Monitoring from Edge Devices to Clouds,” Procedia Comput. Sci., vol. 130, pp. 326–335, Jan. 2018, doi: 10.1016/j.procs.2018.04.046.
R. Dhall and H. Agrawal, “An Improved Energy Efficient Duty Cycling Algorithm for IoT based Precision Agriculture,” Procedia Comput. Sci., vol. 141, pp. 135–142, Jan. 2018, doi: 10.1016/j.procs.2018.10.159.
T. Omitola and G. Wills, “Towards Mapping the Security Challenges of the Internet of Things (IoT) Supply Chain,” Procedia Comput. Sci., vol. 126, pp. 441–450, Jan. 2018, doi: 10.1016/j.procs.2018.07.278.
N. Mishra, L. P. Verma, P. K. Srivastava, and A. Gupta, “An Analysis of IoT Congestion Control Policies,” Procedia Comput. Sci., vol. 132, pp. 444–450, Jan. 2018, doi: 10.1016/j.procs.2018.05.158.
B. Dave, A. Buda, A. Nurminen, and K. Främling, “A framework for integrating BIM and IoT through open standards,” Autom. Constr., vol. 95, pp. 35–45, Nov. 2018, doi: 10.1016/j.autcon.2018.07.022.
S. Janakiraman, “A Hybrid Ant Colony and Artificial Bee Colony Optimization Algorithm-based Cluster Head Selection for IoT,” Procedia Comput. Sci., vol. 143, pp. 360–366, Jan. 2018, doi: 10.1016/j.procs.2018.10.407.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jurnal Pengabdian dan Pemberdayaan Masyarakat Indonesia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.