Desimination of Technology Assistance for the Development of Road Network Geospatial Information in Murtigading Village, Bantul

Authors

  • Noor Mahmudah Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183
  • Nursetiawan Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183
  • Wahyu Nur Avian Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183
  • Ikhwan Fachrurazi Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183
  • Amri Rosyadi Universitas Gadjah Mada, Sleman, Indonesia 55281

DOI:

https://doi.org/10.59247/jppmi.v1i7.34

Keywords:

Geographical Information System (GIS), Thematic Geospatial Information (IGT), Village Infrastructure

Abstract

To realize sustainable village development, the village government is obliged to prepare the Village Medium-Term Development Plan (RPJM). Considering that the RPJM of Murtigading Village, Sanden District, Bantul Regency is still in the form of ordinary digital data, mapping and making maps of geospatial information for earth-oriented village infrastructure is very important in supporting integrated development planning and in accordance with the One Map Policy. This service activity aims to assist the Village Administration in mapping and developing thematic geospatial information (IGT) for roads and public infrastructure in Murtigading Village using the Quantum GIS (QGIS) version 3.10.1 program. The data used is a map of Indonesia's Earth and Quickbird imagery of Bantul Regency. This activity involved Murtigading Village Pamong, 18 Padukuhan Heads, and KPMD, both in preliminary surveys, data collection and mapping, making IGT roads and other public infrastructure with QGIS, synchronization and dissemination of geospatial information data. The results of the activity are in the form of a Geographical Information System (GIS)-based IGT map containing data on the distribution of locations, names, history, current network conditions, geometrics, and road pavements as well as public facilities in shape file (shp) format as well as thematic analog maps with a scale of 1:2000, 1:3000, 1:3,500, 1:4000, and 1:7000 which are expected to be guidelines in planning and prioritizing the development of village infrastructure that is right on target.

 

Author Biographies

Noor Mahmudah, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Nursetiawan , Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Wahyu Nur Avian , Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Ikhwan Fachrurazi , Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Civil Engineering Study Program, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia 55183

Amri Rosyadi , Universitas Gadjah Mada, Sleman, Indonesia 55281

Faculty of Geography, Universitas Gadjah Mada, Sleman, Indonesia 55281

References

S. K. Pundir and R. D. Garg, “A comprehensive approachfor off-road trafficability evaluation and development of modified equation for estimation of RCI to assessregional soil variation using geospatial technology,” Quat. Sci. Adv., vol. 5, p. 100042, Okt. 2021, doi: 10.1016/j.qsa.2021.100042.

S. Mohammadi, B. de Vries, A. Rafiee, M. Esfandiari, and E. Dias, “An exploratory study on the impact of physical and geospatial characteristics of the urban built environment on the buildings annual electricity usage,” J. Build. Eng., vol. 40, p. 102359, Aug. 2021, doi: 10.1016/j.jobe.2021.102359.

K. Garber et al., “Estimating access to health care in Yemen, a complex humanitarian emergency setting: a descriptive applied geospatial analysis,” Lancet Glob. Heal., vol. 8, no. 11, pp. e1435–e1443, Nov. 2020, doi: 10.1016/S2214-109X(20)30359-4.

M. Gehlen et al., “Geospatial intelligence and health analitycs: Its application and utility in a city with high tuberculosis incidence in Brazil,” J. Infect. Public Health, vol. 12, no. 5, pp. 681–689, Sep. 2019, doi: 10.1016/j.jiph.2019.03.012.

A. Yuen, C. M. Rocha, E. Kruger, and M. Tennant, “The equity of access to primary dental care in São Paulo, Brazil: A geospatial analysis,” Int. Dent. J., vol. 68, no. 3, pp. 171–175, Jun. 2018, doi: 10.1111/idj.12336.

N. Yang, H. Shi, H. Tang, and X. Yang, “Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting,” Remote Sens. Environ., vol. 269, p. 112828, Dec. 2021, doi: 10.1016/j.rse.2021.112828.

J. Bousquin, “Discrete Global Grid Systems as scalable geospatial frameworks for characterizing coastal environments,” Environ. Model. Softw., vol. 146, p. 105210, Dec. 2021, doi: 10.1016/j.envsoft.2021.105210.

Y. Walz et al., “Monitoring progress of the Sendai Framework using a geospatial model: The example of people affected by agricultural droughts in Eastern Cape, South Africa,” Prog. Disaster Sci., vol. 5, p. 100062, Jan. 2020, doi: 10.1016/j.pdisas.2019.100062.

K. Bódis, I. Kougias, A. Jäger-Waldau, N. Taylor, and S. Szabó, “A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union,” Renew. Sustain. Energy Rev., vol. 114, p. 109309, Oct. 2019, doi: 10.1016/j.rser.2019.109309.

P. A. Farazi et al., “Temporal and geospatial trends of pediatric cancer incidence in Nebraska over a 24-year period,” Cancer Epidemiol., vol. 52, pp. 83–90, Feb. 2018, doi: 10.1016/j.canep.2017.12.006.

M. Rodrigues, M. Zúñiga-Antón, F. Alcasena, P. Gelabert, and C. Vega-Garcia, “Integrating geospatial wildfire models to delineate landscape management zones and inform decision-making in Mediterranean areas,” Saf. Sci., vol. 147, p. 105616, Dec. 2021, doi: 10.1016/j.ssci.2021.105616.

P. Mandal, J. Saha, S. Bhattacharya, and S. Paul, “Delineation of groundwater potential zones using the integration of geospatial and MIF techniques: A case study on Rarh region of West Bengal, India,” Environ. Challenges, vol. 5, p. 100396, Dec. 2021, doi: 10.1016/j.envc.2021.100396.

C. E. Utazi et al., “Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys,” Vaccine, vol. 38, no. 14, pp. 3062–3071, Mar. 2020, doi: 10.1016/j.vaccine.2020.02.070.

X. Specka et al., “The BonaRes metadata schema for geospatial soil-agricultural research data – Merging INSPIRE and DataCite metadata schemes,” Comput. Geosci., vol. 132, pp. 33–41, Nov. 2019, doi: 10.1016/j.cageo.2019.07.005.

H. Goyal, N. Joshi, and C. Sharma, “An Empirical Analysis of Geospatial Classification for Agriculture Monitoring,” Procedia Comput. Sci., vol. 132, pp. 1102–1112, Jan. 2018, doi: 10.1016/j.procs.2018.05.025.

J. Pinter, B. S. Jones, and B. Vriens, “Loads and elimination of trace elements in wastewater in the Great Lakes basin,” Water Res., vol. 209, p. 117949, Dec. 2021, doi: 10.1016/j.watres.2021.117949.

P. Vostanis et al., “Barriers to child wellbeing in Dhaka settlements: Stakeholder perspectives and geospatial analysis,” Wellbeing, Sp. Soc., vol. 2, p. 100043, Jan. 2021, doi: 10.1016/j.wss.2021.100043.

M. Haji, R. Govindan, and T. Al-Ansari, “Novel approaches for geospatial risk analytics in the energy–water–food nexus using an EWF nexus node,” Comput. Chem. Eng., vol. 140, p. 106936, Sep. 2020, doi: 10.1016/j.compchemeng.2020.106936.

R. S. Ramírez, F. Mora, and E. Quintero, “The use of geospatial data and Bayesian Networks to assess the risk status of Mexican amphibians,” Glob. Ecol. Conserv., vol. 20, p. e00735, Oct. 2019, doi: 10.1016/j.gecco.2019.e00735.

A. M. Helmi, M. S. Farhan, and M. M. Nasr, “A framework for integrating geospatial information systems and hybrid cloud computing,” Comput. Electr. Eng., vol. 67, pp. 145–158, Apr. 2018, doi: 10.1016/j.compeleceng.2018.03.027.

U. Kawser, B. Nath, and A. Hoque, “Observing the influences of climatic and environmental variability over soil salinity changes in the Noakhali Coastal Regions of Bangladesh using geospatial and statistical techniques,” Environ. Challenges, vol. 6, p. 100429, Dec. 2021, doi: 10.1016/j.envc.2021.100429.

N. E. Chiemelu, O. C. D. Anejionu, R. I. Ndukwu, and F. I. Okeke, “Assessing the potentials of largescale generation of solar energy in Eastern Nigeria with geospatial technologies,” Sci. African, vol. 12, p. e00771, Jul. 2021, doi: 10.1016/j.sciaf.2021.e00771.

L. Liou, R. Kim, and S. V. Subramanian, “Identifying geospatial patterns in wealth disparity in child malnutrition across 640 districts in India,” SSM - Popul. Heal., vol. 10, p. 100524, Apr. 2020, doi: 10.1016/j.ssmph.2019.100524.

H. Yu, X. Liu, B. Kong, R. Li, and G. Wang, “Landscape ecology development supported by geospatial technologies: A review,” Ecol. Inform., vol. 51, pp. 185–192, May 2019, doi: 10.1016/j.ecoinf.2019.03.006.

M. Rajasekhar, G. Sudarsana Raju, R. Siddi Raju, and U. Imran Basha, “Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India,” Data Br., vol. 19, pp. 462–474, Aug. 2018, doi: 10.1016/j.dib.2018.04.050.

R. J. C. Hemparuva, S. P. Simon, S. Kinattingal, and N. P. Padhy, “Geographic information system and weather based dynamic line rating for generation scheduling,” Eng. Sci. Technol. an Int. J., vol. 21, no. 4, pp. 564–573, Aug. 2018, doi: 10.1016/j.jestch.2018.05.011.

N. F. Md Bohari, E. Kruger, J. John, and M. Tennant, “Analysis of dental services distribution in Malaysia: a geographic information systems – based approach,” Int. Dent. J., vol. 69, no. 3, pp. 223–229, Jun. 2019, doi: 10.1111/idj.12454.

G. S. Ogato, A. Bantider, K. Abebe, and D. Geneletti, “Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, oromia regional State, Ethiopia,” J. Hydrol. Reg. Stud., vol. 27, p. 100659, Feb. 2020, doi: 10.1016/j.ejrh.2019.100659.

R. G. Abd Ellah, “Morphometric analysis of Toshka Lakes in Egypt: A succinct review of geographic information systems & remote sensing based techniques,” Egypt. J. Aquat. Res., vol. 47, no. 2, pp. 215–221, Jun. 2021, doi: 10.1016/j.ejar.2021.05.005.

Z. Almarhoon, D. Cuadros, and J. Guo, “Using Geographic Information System (GIS) to Study the Utilization Trends of Incretin-Based and Peptides Therapies for Type 2 Diabetes in the US Medicaid Programa,” Value Heal., vol. 21, no. 130863, pp. S79–S80, May 2018, doi: 10.1016/j.jval.2018.04.515.

N. N. A. Tukimat, N. A. Ahmad Syukri, and M. A. Malek, “Projection the long-term ungauged rainfall using integrated Statistical Downscaling Model and Geographic Information System (SDSM-GIS) model,” Heliyon, vol. 5, no. 9, p. e02456, Sep. 2019, doi: 10.1016/j.heliyon.2019.e02456.

K. Abutaleb, M. S. Yones, M. El-Shirbeny, S. A. M. Ma’mon, and S. AlAshal, “Modelling and monitoring house fly M. domestica using remote sensing data and geographic information system,” Egypt. J. Remote Sens. Sp. Sci., vol. 23, no. 3, pp. 311–319, Dec. 2020, doi: 10.1016/j.ejrs.2019.03.001.

S. Schierbeck et al., “National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones — A geographical information system analysis,” Resuscitation, vol. 163, pp. 136–145, Jun. 2021, doi: 10.1016/j.resuscitation.2021.02.040.

K. Tóth and A. Kučas, “Conformance testing of geographic information. A case study on the Land Parcel Identification System,” Comput. Environ. Urban Syst., vol. 70, pp. 71–83, Jul. 2018, doi: 10.1016/j.compenvurbsys.2018.02.003.

I. Piri, M. Moosavi, A. Z. Taheri, H. Alipur, S. Shojaei, and S. A. Mousavi, “The spatial assessment of suitable areas for medicinal species of Astragalus (Astragalus hypsogeton Bunge) using the Analytic Hierarchy Process (AHP) and Geographic Information System (GIS),” Egypt. J. Remote Sens. Sp. Sci., vol. 22, no. 2, pp. 193–201, Aug. 2019, doi: 10.1016/j.ejrs.2018.02.003.

M. Cabrera et al., “Spatial distribution of dengue in Ecuador during 1994–2018 using geographic information systems (GIS) – Implications public health and travel medicine,” Int. J. Infect. Dis., vol. 101, p. 451, Dec. 2020, doi: 10.1016/j.ijid.2020.09.1179.

Z. Saing, H. Djainal, and S. Deni, “Land use balance determination using satellite imagery and geographic information system: case study in South Sulawesi Province, Indonesia,” Geod. Geodyn., vol. 12, no. 2, pp. 133–147, Mar. 2021, doi: 10.1016/j.geog.2020.11.006.

P. Sivasankar et al., “Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS): A novel approach to study Ocean Microbiome,” Data Br., vol. 17, pp. 1307–1313, Apr. 2018, doi: 10.1016/j.dib.2018.02.054.

J. G. Moreno Navarro, L. A. Jaramillo, and E. L. Magan, “Assessing connectivity in single and multimodal networks using Geographic Information Systems (GIS),” Transp. Res. Procedia, vol. 40, pp. 1473–1480, Jan. 2019, doi: 10.1016/j.trpro.2019.07.204.

D. Ali et al., “A cost-effectiveness analysis of traditional and geographic information system-supported microplanning approaches for routine immunization program management in northern Nigeria,” Vaccine, vol. 38, no. 6, pp. 1408–1415, Feb. 2020, doi: 10.1016/j.vaccine.2019.12.002.

Y. Shin Park et al., “Evaluation of neighborhood resources and mental health in American military Veterans using geographic information systems,” Prev. Med. Reports, vol. 24, p. 101546, Dec. 2021, doi: 10.1016/j.pmedr.2021.101546.

T. Gumbo, M. Geyer, I. Moyo, and T. Moyo, “Mapping spatial locational trends of informal economic enterprises using mobile geographic information data in the city of in Harare, Zimbabwe,” Data Br., vol. 20, pp. 1692–1699, Oct. 2018, doi: 10.1016/j.dib.2018.09.037.

D. L. Scerpella, A. Adam, K. Marx, and L. N. Gitlin, “Implications of Geographic Information Systems (GIS) for targeted recruitment of older adults with dementia and their caregivers in the community: A retrospective analysis,” Contemp. Clin. Trials Commun., vol. 14, p. 100338, Jun. 2019, doi: 10.1016/j.conctc.2019.100338.

R. J. Moriarity, E. N. Liberda, and L. J. S. Tsuji, “Using a geographic information system to assess local scale methylmercury exposure from fish in nine communities of the Eeyou Istchee territory (James Bay, Quebec, Canada),” Environ. Res., vol. 191, p. 110147, Dec. 2020, doi: 10.1016/j.envres.2020.110147.

J. Oteri et al., “Application of the Geographic Information System (GIS) in immunisation service delivery; its use in the 2017/2018 measles vaccination campaign in Nigeria,” Vaccine, vol. 39, pp. C29–C37, Nov. 2021, doi: 10.1016/j.vaccine.2021.01.021.

Downloads

Published

2021-11-04

How to Cite

Noor Mahmudah, Nursetiawan, Wahyu Nur Avian, Ikhwan Fachrurazi, & Amri Rosyadi. (2021). Desimination of Technology Assistance for the Development of Road Network Geospatial Information in Murtigading Village, Bantul. Jurnal Pengabdian Dan Pemberdayaan Masyarakat Indonesia, 1(7), 286–296. https://doi.org/10.59247/jppmi.v1i7.34

Issue

Section

Articles