Training of dual band HT-based emergency communication tools on member of KTB BPBD, yogyakarta

Authors

  • Denny Hardiyanto Universitas PGRI Madiun, Madiun, Indonesia
  • Samuel Kristiyana Institut Sains dan Teknologi AKPRIND Yogyakarta, Yogyakarta, Indonesia
  • Dyah Anggun Sartika Politeknik Negeri Madiun, Madiun, Indonesia
  • Irfan Ahmad Khurasan University, Nangarhar, Afghanistan
  • Israa Al_Barazanchi Baghdad College of Economic Sciences University, Baghdad - Iraq

DOI:

https://doi.org/10.59247/jppmi.v1i2.6

Keywords:

Disaster, Hand Transceiver, Radio Communication, BPBD DIY

Abstract

Currently, the development of communication technology is very advanced with the presence of cellular and internet technology. However, when there is a public security disturbance and in an emergency situation, cellular communication devices are very dependent on electricity sources and pulses to communicate. Besides, if a natural disaster occurs, the power source will go out and the cellular provider BTS will not function. Radio communication can be used as an adequate alternative technology in dealing with emergencies. Radio communication can be established using simple equipment such as HT (Hand Transceiver), transmitting antennas and repeater stations to extend the communication range. The advantages of radio communication are that it is easier to implement, economical, and has a wide coverage. Therefore, the purpose of this community service activity is to improve skills in using emergency communication tools and provide an understanding of Standard Operating Procedures on how to communicate in an emergency situation. The target of this activity includes members of the National Disaster Relief Agency (BPBD) at Yogyakarta City. There are 2 activities, namely radio frequency regulation and skills workshops using emergency communication tools (HT). The result of this community service activity is that the participants are skilled in communicating using HT in times of emergency.

Author Biographies

Denny Hardiyanto, Universitas PGRI Madiun, Madiun, Indonesia

Electrical Engineering Education, Universitas PGRI Madiun, Madiun, Indonesia

Samuel Kristiyana, Institut Sains dan Teknologi AKPRIND Yogyakarta, Yogyakarta, Indonesia

Electrical Engineering, Institut Sains dan Teknologi AKPRIND Yogyakarta, Yogyakarta, Indonesia

Dyah Anggun Sartika, Politeknik Negeri Madiun, Madiun, Indonesia

Computer Control Engineering, Politeknik Negeri Madiun, Madiun, Indonesia

Irfan Ahmad, Khurasan University, Nangarhar, Afghanistan

Department of Computer Science, Khurasan University, Nangarhar, Afghanistan

Israa Al_Barazanchi, Baghdad College of Economic Sciences University, Baghdad - Iraq

Computer Engineering Techniques Department , Baghdad College of Economic Sciences University, Baghdad - Iraq

References

A. Arviansyah, R. D. Kusumastuti, N. Nurmala, and S. S. Wibowo, “Data on knowledge management and natural disaster preparedness: A field survey in East Lombok, Indonesia,” Data Br., vol. 36, p. 107156, Jun. 2021, doi: 10.1016/j.dib.2021.107156.

V. Bollettino, T. Alcayna-Stevens, M. Sharma, P. Dy, P. Pham, and P. Vinck, “Public perception of climate change and disaster preparedness: Evidence from the Philippines,” Clim. Risk Manag., vol. 30, no. October, p. 100250, 2020, doi: 10.1016/j.crm.2020.100250.

M. Martono, S. Satino, N. Nursalam, F. Efendi, and A. Bushy, “Indonesian nurses’ perception of disaster management preparedness,” Chinese J. Traumatol., vol. 22, no. 1, pp. 41–46, Feb. 2019, doi: 10.1016/j.cjtee.2018.09.002.

M. Adhikari, D. Paton, D. Johnston, R. Prasanna, and S. T. McColl, “Modelling predictors of earthquake hazard preparedness in Nepal,” Procedia Eng., vol. 212, pp. 910–917, 2018, doi: 10.1016/j.proeng.2018.01.117.

B. W. Kulohoma, “COVID-19 risk factors: The curious case of Africa’s governance and preparedness,” Sci. African, vol. 13, p. e00948, Sep. 2021, doi: 10.1016/j.sciaf.2021.e00948.

P. I. Ilo, C. Nkiko, R. Izuagbe, and I. M. Furfuri, “Librarians’ perception of disaster preparedness as precursor for effective preservation and conservation of library resources in Nigerian university libraries,” Int. J. Disaster Risk Reduct., vol. 43, p. 101381, Feb. 2020, doi: 10.1016/j.ijdrr.2019.101381.

D. Uhm, G. Jung, Y. Yun, Y. Lee, and C. Lim, “Factors Affecting the Disaster Response Competency of Emergency Medical Technicians in South Korea,” Asian Nurs. Res. (Korean. Soc. Nurs. Sci)., vol. 13, no. 4, pp. 264–269, Oct. 2019, doi: 10.1016/j.anr.2019.09.005.

S. Katoh, N. Sato, and M. Kurihara, “Disaster preparedness in rehabilitation in an area at high risk of mega-earthquakes in Japan,” Ann. Phys. Rehabil. Med., vol. 61, p. e119, Jul. 2018, doi: 10.1016/j.rehab.2018.05.260.

S. Krongthaeo, N. Piaseu, T. Junda, and B. M. Wall, “Community-based flood preparedness for Thai dependent older adults,” Int. J. Disaster Risk Reduct., vol. 63, p. 102460, Sep. 2021, doi: 10.1016/j.ijdrr.2021.102460.

B. J. Gabbe et al., “Survey of major trauma centre preparedness for mass casualty incidents in Australia, Canada, England and New Zealand,” EClinicalMedicine, vol. 21, p. 100322, Apr. 2020, doi: 10.1016/j.eclinm.2020.100322.

A. Dzulkarnain, E. Suryani, and M. R. Aprillya, “Analysis of Flood Identification and Mitigation for Disaster Preparedness: A System Thinking Approach,” Procedia Comput. Sci., vol. 161, pp. 927–934, 2019, doi: 10.1016/j.procs.2019.11.201.

J. B. P. Juanzon and A. W. C. Oreta, “An assessment on the effective preparedness and disaster response: The case of Santa Rosa City, Laguna,” Procedia Eng., vol. 212, no. 2017, pp. 929–936, 2018, doi: 10.1016/j.proeng.2018.01.120.

T. Konami, H. Koga, and A. Kawatsura, “Role of pre-disaster discussions on preparedness on consensus-making of integrated flood management (IFM) after a flood disaster, based on a case in the Abukuma River Basin, Fukushima, Japan,” Int. J. Disaster Risk Reduct., vol. 53, no. November 2020, p. 102012, Feb. 2021, doi: 10.1016/j.ijdrr.2020.102012.

M. Matsuba, Y. Tanaka, T. Yamakita, Y. Ishikawa, and K. Fujikura, “Estimation of tsunami debris on seafloors towards future disaster preparedness: Unveiling spatial varying effects of combined land use and oceanographic factors,” Mar. Pollut. Bull., vol. 157, no. May, p. 111289, Aug. 2020, doi: 10.1016/j.marpolbul.2020.111289.

F. Imamura, S. P. Boret, A. Suppasri, and A. Muhari, “Recent occurrences of serious tsunami damage and the future challenges of tsunami disaster risk reduction,” Prog. Disaster Sci., vol. 1, p. 100009, May 2019, doi: 10.1016/j.pdisas.2019.100009.

F. E. A. Horita, J. P. de Albuquerque, and V. Marchezini, “Understanding the decision-making process in disaster risk monitoring and early-warning: A case study within a control room in Brazil,” Int. J. Disaster Risk Reduct., vol. 28, no. January, pp. 22–31, Jun. 2018, doi: 10.1016/j.ijdrr.2018.01.034.

K. Uddin and M. A. Matin, “Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology,” Prog. Disaster Sci., vol. 11, no. March 2019, p. 100185, Oct. 2021, doi: 10.1016/j.pdisas.2021.100185.

H. Kawasaki, S. Yamasaki, M. M. Rahman, Y. Murata, M. Iwasa, and C. Teramoto, “Teachers-parents cooperation in disaster preparation when schools become as evacuation centers,” Int. J. Disaster Risk Reduct., vol. 44, no. May 2019, p. 101445, Apr. 2020, doi: 10.1016/j.ijdrr.2019.101445.

Y. Nara and S. Battulga, “Observations on Residents’ Risk Awareness and Practice of Countermeasures against Natural Disasters in Mongolia: Questionnaire Survey Data of Khovd Citizens,” Procedia Comput. Sci., vol. 159, pp. 2345–2354, 2019, doi: 10.1016/j.procs.2019.09.409.

A. Abulnour, “Disaster preparedness in the Karnak temple : a luxury or a must?,” Alexandria Eng. J., vol. 57, no. 4, pp. 2879–2886, Dec. 2018, doi: /10.1016/j.aej.2018.07.002.

N. Faruk et al., “Large-scale radio propagation path loss measurements and predictions in the VHF and UHF bands,” Heliyon, vol. 7, no. 6, p. e07298, Jun. 2021, doi: 10.1016/j.heliyon.2021.e07298.

S. Hansson et al., “Communication-related vulnerability to disasters: A heuristic framework,” Int. J. Disaster Risk Reduct., vol. 51, p. 101931, Dec. 2020, doi: 10.1016/j.ijdrr.2020.101931.

K. Pal, “Algorithmic Solutions for RFID Tag Anti-Collision Problem in Supply Chain Management,” Procedia Comput. Sci., vol. 151, pp. 929–934, 2019, doi: 10.1016/j.procs.2019.04.129.

Z. ZhongKai, J. Xuecheng, and C. Ping, “Program and circuit design of simple software radio FSK based on MCU,” Procedia Comput. Sci., vol. 131, pp. 440–445, 2018, doi: 10.1016/j.procs.2018.04.250.

S. Kumar and A. K. Singh, “A localized algorithm for clustering in cognitive radio networks,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 5, pp. 600–607, Jun. 2021, doi: 10.1016/j.jksuci.2018.04.004.

M. Jalil Piran et al., “Multimedia communication over cognitive radio networks from QoS/QoE perspective: A comprehensive survey,” J. Netw. Comput. Appl., vol. 172, no. June, p. 102759, Dec. 2020, doi: 10.1016/j.jnca.2020.102759.

O. G. Igbinosa and U. K. Okpeki, “Performance investigation of different pathloss models for a wireless communication system in Nigeria,” Heliyon, vol. 5, no. 5, p. e01656, May 2019, doi: 10.1016/j.heliyon.2019.e01656.

C. Wang, Y. Wang, and C. Wu, “Bayesian-based Distributed Sequential Decision In Rail Transit Cognitive Radio,” Procedia Comput. Sci., vol. 129, pp. 382–388, 2018, doi: 10.1016/j.procs.2018.03.012.

E. B. Priyanka, S. Thangavel, and T. Kalavathidevi, “Miniaturized antenna design for communication establishment of peer-to-peer communication in the oil pipelines,” Pet. Res., no. xxxx, Apr. 2021, doi: /10.1016/j.ptlrs.2021.04.003.

P. K. Paudel, R. Bastola, and P. T. Lopchan, “The coverage of environmental issues in FM radios in Nepal: the current status and challenges,” Heliyon, vol. 6, no. 7, p. e04354, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04354.

V. Popov, “Cross-polarization effect of radio waves propagation by forest vegetation in wireless communication systems on transport,” Procedia Comput. Sci., vol. 149, pp. 195–201, 2019, doi: 10.1016/j.procs.2019.01.123.

N. T. Surajudeen-Bakinde et al., “Path loss predictions for multi-transmitter radio propagation in VHF bands using Adaptive Neuro-Fuzzy Inference System,” Eng. Sci. Technol. an Int. J., vol. 21, no. 4, pp. 679–691, Aug. 2018, doi: 10.1016/j.jestch.2018.05.013.

M. E. Belkin, D. Fofanov, and A. Sigov, “Microwave photonics approach as a novel smart fabrication technique of a radio communication jammers,” Procedia Comput. Sci., vol. 180, no. 2019, pp. 950–957, 2021, doi: 10.1016/j.procs.2021.01.346.

I. Kabashkin and V. Philippov, “Distributed ecosystem of voice communications for air traffic control system,” Procedia Comput. Sci., vol. 177, pp. 32–39, 2020, doi: 10.1016/j.procs.2020.10.008.

M. Mariola, Y. Ismail, and F. Petruccione, “Radio and optical alignment method based on GPS,” MethodsX, vol. 6, no. May, pp. 2057–2064, 2019, doi: 10.1016/j.mex.2019.09.016.

A. C. Polak, M. Wagner, M. F. Duarte, R. W. Jackson, and D. L. Goeckel, “Mitigation of spectral leakage for single carrier, block-processing cognitive radio receivers,” Digit. Commun. Networks, vol. 4, no. 2, pp. 106–110, Apr. 2018, doi: 10.1016/j.dcan.2017.04.001.

A. B. Olorunsola, O. M. Ikumapayi, B. I. Oladapo, A. O. Alimi, and A. O. M. Adeoye, “Temporal variation of exposure from radio-frequency electromagnetic fields around mobile communication base stations,” Sci. African, vol. 12, p. e00724, Jul. 2021, doi: 10.1016/j.sciaf.2021.e00724.

Y. Ai, A. Mathur, H. Lei, M. Cheffena, and I. S. Ansari, “Secrecy enhancement of RF backhaul system with parallel FSO communication link,” Opt. Commun., vol. 475, no. June, p. 126193, Nov. 2020, doi: 10.1016/j.optcom.2020.126193.

V. Popov, V. Skudnovs, A. Shevchenko, and A. Vasiljevs, “Railway heterogeneous communication network model investigations,” Procedia Comput. Sci., vol. 149, pp. 223–230, 2019, doi: 10.1016/j.procs.2019.01.127.

T. Kodera, “Adaptive antenna system by ESP32-PICO-D4 and its application to web radio system,” HardwareX, vol. 3, no. March, pp. 91–99, Apr. 2018, doi: 10.1016/j.ohx.2018.03.001.

J. de J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso, “A technical review of wireless security for the internet of things: Software defined radio perspective,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, Apr. 2021, doi: 10.1016/j.jksuci.2021.04.003.

A. El Rharras, M. Saber, A. Chehri, R. Saadane, N. Hakem, and G. Jeon, “Optimization of Spectrum Utilization Parameters in Cognitive Radio Using Genetic Algorithm,” Procedia Comput. Sci., vol. 176, pp. 2466–2475, 2020, doi: 10.1016/j.procs.2020.09.328.

A. F. Pennington, K. Sircar, J. Hsu, H. S. Zahran, S. A. Damon, and M. C. Mirabelli, “Communication channels for air quality alerts in the United States,” Prev. Med. Reports, vol. 14, no. January, p. 100860, Jun. 2019, doi: 10.1016/j.pmedr.2019.100860.

K. . Aiswarya, A. B. Thomas, A. S. Motti, A. Kuriakose, and J. Jacob, “Decision fusion in cognitive radio using improved fuzzy approach,” Procedia Comput. Sci., vol. 143, pp. 219–225, 2018, doi: 10.1016/j.procs.2018.10.383.

M. Boström, “Other-initiated repair as an indicator of critical communication in ship-to-ship interaction,” J. Pragmat., vol. 174, pp. 78–92, Mar. 2021, doi: 10.1016/j.pragma.2021.01.007.

M. Boström, “Mind the Gap! A quantitative comparison between ship-to-ship communication and intended communication protocol,” Saf. Sci., vol. 123, no. November 2019, p. 104567, Mar. 2020, doi: 10.1016/j.ssci.2019.104567.

X. Zhao, L. Shuyu, Y. Kajihara, and H. Yamamoto, “Indoor Flow Line Measurement Method Based on Radio Waves and Ultrasonic Sensors,” Procedia Manuf., vol. 39, no. 2019, pp. 1104–1111, 2019, doi: 10.1016/j.promfg.2020.01.360.

S. I. Popoola, A. A. Atayero, and N. Faruk, “Received signal strength and local terrain profile data for radio network planning and optimization at GSM frequency bands,” Data Br., vol. 16, pp. 972–981, Feb. 2018, doi: 10.1016/j.dib.2017.12.036.

W. Cui, A. Dong, Y. Cao, C. Zhang, J. Yu, and S. Li, “Deep Learning Based MIMO Transmission with Precoding and Radio Transformer Networks,” Procedia Comput. Sci., vol. 187, pp. 396–401, 2021, doi: 10.1016/j.procs.2021.04.078.

J. Hong et al., “Radio-frequency transparent carbon nanotube electrothermal film for radome de-icing application,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10854–10862, Sep. 2020, doi: 10.1016/j.jmrt.2020.07.097.

P. Elliott et al., “Use of TETRA personal radios and sickness absence in the Airwave Health Monitoring Study of the British police forces,” Environ. Res., vol. 175, no. May, pp. 148–155, Aug. 2019, doi: 10.1016/j.envres.2019.05.012.

E. Di Fusco, I. Lauriola, R. Verdone, V. Di Federico, and V. Ciriello, “Impact of uncertainty in soil texture parameters on estimation of soil moisture through radio waves transmission,” Adv. Water Resour., vol. 122, no. July, pp. 131–138, Dec. 2018, doi: 10.1016/j.advwatres.2018.10.007.

M. Li, “Research and summary of SNR estimation algorithm based on cognitive radio,” Procedia Comput. Sci., vol. 183, pp. 205–211, 2021, doi: 10.1016/j.procs.2021.02.051.

D. Tarek, A. Benslimane, M. Darwish, and A. M. Kotb, “Survey on spectrum sharing/allocation for cognitive radio networks Internet of Things,” Egypt. Informatics J., vol. 21, no. 4, pp. 231–239, Dec. 2020, doi: 10.1016/j.eij.2020.02.003.

P. M. Pradhan and G. Panda, “S-transformation based integrated approach for spectrum estimation, storage, and sensing in cognitive radio,” Digit. Commun. Networks, vol. 5, no. 3, pp. 160–169, Aug. 2019, doi: 10.1016/j.dcan.2018.09.004.

A. Pandey, R. Gandhiraj, S. Kirthiga, M. Jayakumar, M. N. Devi, and S. C. Bera, “Emulation of Channel Model and Estimation for MIMO based Satellite Land Mobile System using Software Defined Radio,” Procedia Comput. Sci., vol. 143, pp. 868–875, 2018, doi: 10.1016/j.procs.2018.10.368.

S. Saha, S. G. Pradhan, and A. Siwakoti, “Communicating to reduce disaster risk through radio in Nepal: A case study of Milijuli Nepali and Kathamaala,” Prog. Disaster Sci., vol. 10, p. 100161, Apr. 2021, doi: 10.1016/j.pdisas.2021.100161.

A. Kos and A. Umek, “Reliable Communication Protocol for Coach Based Augmented Biofeedback Applications in Swimming,” Procedia Comput. Sci., vol. 174, no. 2019, pp. 351–357, 2020, doi: 10.1016/j.procs.2020.06.098.

J. S. Ojo, A. O. Adelakun, and O. V. Edward, “Comparative study on Radio Refractivity Gradient in the troposphere using Chaotic Quantifiers,” Heliyon, vol. 5, no. 8, p. e02083, Aug. 2019, doi: 10.1016/j.heliyon.2019.e02083.

Z. Yin, Y. Wang, and C. Wu, “Reinforcement Learning Spectrum Management Paradigm in Cognitive Radio using Novel State and Action Sets,” Procedia Comput. Sci., vol. 129, pp. 433–437, 2018, doi: 10.1016/j.procs.2018.03.020.

Setiawan, D. (2010). Alokasi Frekuensi. In D. Setiawan, Alokasi Frekuensi Kebijakan dan Perencanaan Spektrum Indonesia. Jakarta: Departemen Komunikasi dan Informatika, Direktorat Jenderal Pos dan Telekomunikasi.

kominfo. (2013, 10 28). Perizinan Spektrum Frekuensi Radio. Retrieved Februari 21, 2021, from Kementerian Komunikasi dan Informasi Republik Indonesia: https://kominfo.go.id/content/detail/3345/perizinan-spektrum-frekuensi-radio/0/layanan_kominfo.

nusakom. (2020, September 14). Tutorial Lengkap Cara Penggunaan dan Setting HT Baofeng UV 5R. Retrieved Februari 21, 2021, from Nusakom.com: https://www.nusakom.com/2020/09/setting-ht-baofeng-uv-5r.html.

nusakom. (2018, November 27). Cara Setting HT Alinco DJ A10. Retrieved Februari 21, 2021, from Nusakom.com: https://www.nusakom.com/2018/11/cara-setting-ht-alinco-dj-a10.html.

Downloads

Published

2021-09-07

How to Cite

Denny Hardiyanto, Samuel Kristiyana, Dyah Anggun Sartika, Irfan Ahmad, & Israa Al_Barazanchi. (2021). Training of dual band HT-based emergency communication tools on member of KTB BPBD, yogyakarta. Jurnal Pengabdian Dan Pemberdayaan Masyarakat Indonesia, 1(2), 40–48. https://doi.org/10.59247/jppmi.v1i2.6

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>