Community empowerment in landslide management in Sonyo hamlet
DOI:
https://doi.org/10.59247/jppmi.v1i12.60Keywords:
Early Warning System, Landslide, Microcontroller, Sonyo VillageAbstract
Soyo Hamlet is led by Mr. Suranto as the head of the hamlet. The hamlet itself consists of eight RTs with 173 family heads. The hamlet is located in a mountainous area in the Kulon Progo district. Soyono Hamlet is bordered by Sidomulyo Hamlet and Mount Kelir Hamlet. Soyo Hamlet, which is located in a mountainous area, has many problems. One of the problems that have come to our attention is the problem of vulnerability to natural disasters. Natural disasters that often occur in the village are landslides. It is feared that in the rainy season like today, heavy rains can cause landslides. Based on the above problems, this community service designs and implements a landslide early warning tool. This tool is made using the main component is a microcontroller which is used as a data processor, a sensor uses a potentiometer to detect ground movement, and a siren. In addition to installing landslide equipment, this community service also provides lessons on landslide recovery
References
N. S. Mohd Nazer, “Modelling Viscous Behaviour of Clayey Geomaterials using Single Mechanical- Analogue Model,” Sains Malaysiana, vol. 48, no. 11, pp. 2521–2528, Nov. 2019, doi: 10.17576/jsm-2019-4811-22.
E. A. Oguz, I. Depina, B. Myhre, G. Devoli, H. Rustad, and V. Thakur, “IoT-based hydrological monitoring of water-induced landslides: a case study in central Norway,” Bull. Eng. Geol. Environ., vol. 81, no. 5, p. 217, May 2022, doi: 10.1007/s10064-022-02721-z.
A. Reder and G. Rianna, “Exploring ERA5 reanalysis potentialities for supporting landslide investigations: a test case from Campania Region (Southern Italy),” Landslides, vol. 18, no. 5, pp. 1909–1924, May 2021, doi: 10.1007/s10346-020-01610-4.
A. M. A. M. Maturidi, N. Kasim, K. A. Taib, W. N. A. W. Azahar, and H. A. Tajuddin, “Empirically Based Rainfall Threshold for Landslides Occurrence in Cameron Highlands, Malaysia,” Civ. Eng. Archit., vol. 8, no. 6, pp. 1481–1490, Dec. 2020, doi: 10.13189/cea.2020.080629.
G. Pecoraro, M. Calvello, and L. Piciullo, “Monitoring strategies for local landslide early warning systems,” Landslides, vol. 16, no. 2, pp. 213–231, Feb. 2019, doi: 10.1007/s10346-018-1068-z.
H. Rana and G. L. S. Babu, “Regional back analysis of landslide events using TRIGRS model and rainfall threshold: an approach to estimate landslide hazard for Kodagu, India,” Bull. Eng. Geol. Environ., vol. 81, no. 4, p. 160, Apr. 2022, doi: 10.1007/s10064-022-02660-9.
M. T. Abraham, N. Satyam, and B. Pradhan, “Forecasting Landslides Using Mobility Functions: A Case Study from Idukki District, India,” Indian Geotech. J., vol. 51, no. 4, pp. 684–693, Aug. 2021, doi: 10.1007/s40098-020-00490-8.
Z. Liu, D. Guo, S. Lacasse, J. Li, B. Yang, and J. Choi, “Algorithms for intelligent prediction of landslide displacements,” J. Zhejiang Univ. A, vol. 21, no. 6, pp. 412–429, Jun. 2020, doi: 10.1631/jzus.A2000005.
A. Segalini, A. Carri, C. Grignaffini, and G. Capparelli, “Formulation of landslide risk scenarios using underground monitoring data and numerical models: conceptual approach, analysis, and evolution of a case study in Southern Italy,” Landslides, vol. 16, no. 5, pp. 1043–1053, May 2019, doi: 10.1007/s10346-019-01137-3.
K. Pham, D. Kim, C. V. Le, and H. Choi, “Dual tree-boosting framework for estimating warning levels of rainfall-induced landslides,” Landslides, vol. 19, no. 9, pp. 2249–2262, Sep. 2022, doi: 10.1007/s10346-022-01894-8.
M. Ehrlich, B. J. Luiz, C. G. Mendes, and W. A. Lacerda, “Triggering factors and critical thresholds for landslides in Rio de Janeiro-RJ, Brazil,” Nat. Hazards, vol. 107, no. 1, pp. 937–952, May 2021, doi: 10.1007/s11069-021-04616-w.
Y. Yan and M. A. Ashraf, “The application of the intelligent algorithm in the prevention and early warning of mountain mass landslide disaster,” Arab. J. Geosci., vol. 13, no. 2, p. 79, Jan. 2020, doi: 10.1007/s12517-020-5116-3.
Z. Tao, H. Zhang, C. Zhu, Z. Hao, X. Zhang, and X. Hu, “Design and operation of App-based intelligent landslide monitoring system: the case of Three Gorges Reservoir Region,” Geomatics, Nat. Hazards Risk, vol. 10, no. 1, pp. 1209–1226, Jan. 2019, doi: 10.1080/19475705.2019.1568312.
T. Zeng, K. Yin, H. Jiang, X. Liu, Z. Guo, and D. Peduto, “Groundwater level prediction based on a combined intelligence method for the Sifangbei landslide in the Three Gorges Reservoir Area,” Sci. Rep., vol. 12, no. 1, p. 11108, Dec. 2022, doi: 10.1038/s41598-022-14037-9.
L. Li, S. Cheng, and Z. Wen, “Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model,” J. Mt. Sci., vol. 18, no. 8, pp. 2130–2142, Aug. 2021, doi: 10.1007/s11629-020-6396-5.
M. T. Abraham, N. Satyam, A. Rosi, B. Pradhan, and S. Segoni, “The Selection of Rain Gauges and Rainfall Parameters in Estimating Intensity-Duration Thresholds for Landslide Occurrence: Case Study from Wayanad (India),” Water, vol. 12, no. 4, p. 1000, Apr. 2020, doi: 10.3390/w12041000.
G. T. Harilal, D. Madhu, M. V. Ramesh, and D. Pullarkatt, “Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India,” Landslides, vol. 16, no. 12, pp. 2395–2408, Dec. 2019, doi: 10.1007/s10346-019-01244-1.
D. L. De Luca and G. Capparelli, “Rainfall nowcasting model for early warning systems applied to a case over Central Italy,” Nat. Hazards, vol. 112, no. 1, pp. 501–520, May 2022, doi: 10.1007/s11069-021-05191-w.
A. Carri, A. Valletta, E. Cavalca, R. Savi, and A. Segalini, “Advantages of IoT-Based Geotechnical Monitoring Systems Integrating Automatic Procedures for Data Acquisition and Elaboration,” Sensors, vol. 21, no. 6, p. 2249, Mar. 2021, doi: 10.3390/s21062249.
Suryadi, M. Yuliza, A. Chandranata, and Yulindon, “LANDSLIDES EARLY WARNING SYSTEM WITH GSM MODEM BASED ON MICROCONTROLLER USING RAIN, SOIL SHIFT AND ACCELEROMETER SENSORS,” Int. J. GEOMATE, vol. 19, no. 71, pp. 137–144, Jul. 2020, doi: 10.21660/2020.71.00949.
T. Zengaffinen, F. Løvholt, G. K. Pedersen, and A. Muhari, “Modelling 2018 Anak Krakatoa Flank Collapse and Tsunami: Effect of Landslide Failure Mechanism and Dynamics on Tsunami Generation,” Pure Appl. Geophys., vol. 177, no. 6, pp. 2493–2516, Jun. 2020, doi: 10.1007/s00024-020-02489-x.
B.-S. Lin, K. Thomas, C.-K. Chen, and H.-C. Ho, “Evaluation of landslides process and potential in Shenmu sub-watersheds, central Taiwan,” Landslides, vol. 16, no. 3, pp. 551–570, Mar. 2019, doi: 10.1007/s10346-018-1109-7.
T. Nian, H. Wu, D. Li, W. Zhao, K. Takara, and D. Zheng, “Experimental investigation on the formation process of landslide dams and a criterion of river blockage,” Landslides, vol. 17, no. 11, pp. 2547–2562, Nov. 2020, doi: 10.1007/s10346-020-01494-4.
R. Hou, N. Chen, G. Hu, Z. Han, and E. Liu, “Characteristics, mechanisms, and post-disaster lessons of the delayed semi-diagenetic landslide in Hanyuan, Sichuan, China,” Landslides, vol. 19, no. 2, pp. 437–449, Feb. 2022, doi: 10.1007/s10346-021-01751-0.
H. Thirugnanam, M. V. Ramesh, and V. P. Rangan, “Enhancing the reliability of landslide early warning systems by machine learning,” Landslides, vol. 17, no. 9, pp. 2231–2246, Sep. 2020, doi: 10.1007/s10346-020-01453-z.
Monsieurs, Dewitte, Depicker, and Demoulin, “Towards a Transferable Antecedent Rainfall—Susceptibility Threshold Approach for Landsliding,” Water, vol. 11, no. 11, p. 2202, Oct. 2019, doi: 10.3390/w11112202.
S. Wickramaratne, S. C. Wirasinghe, and J. Ruwanpura, “An update of proposed Sri Lanka warning system for east and west coast tsunamis,” Int. J. Disaster Resil. Built Environ., vol. 11, no. 2, pp. 169–186, Dec. 2019, doi: 10.1108/IJDRBE-08-2019-0052.
A. Manconi and A. C. Mondini, “Landslides caught on seismic networks and satellite radars,” Nat. Hazards Earth Syst. Sci., vol. 22, no. 5, pp. 1655–1664, May 2022, doi: 10.5194/nhess-22-1655-2022.
A. Dikshit, R. Sarkar, B. Pradhan, R. Jena, D. Drukpa, and A. M. Alamri, “Temporal Probability Assessment and Its Use in Landslide Susceptibility Mapping for Eastern Bhutan,” Water, vol. 12, no. 1, p. 267, Jan. 2020, doi: 10.3390/w12010267.
J. Wang, G. Nie, S. Gao, and C. Xue, “Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 7, pp. 1387–1398, Jul. 2019, doi: 10.5194/nhess-19-1387-2019.
H. Wang, D. Nie, X. Tuo, and Y. Zhong, “Research on crack monitoring at the trailing edge of landslides based on image processing,” Landslides, vol. 17, no. 4, pp. 985–1007, Apr. 2020, doi: 10.1007/s10346-019-01335-z.
D. Zuliani, L. Tunini, F. Di Traglia, M. Chersich, and D. Curone, “Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring,” Sensors, vol. 22, no. 9, p. 3526, May 2022, doi: 10.3390/s22093526.
S. Zhang, J. Ma, and H. Tang, “Estimation of Risk Thresholds for a Landslide in the Three Gorges Reservoir Based on a KDE-Copula-VaR Approach,” Geofluids, vol. 2020, pp. 1–13, Jun. 2020, doi: 10.1155/2020/8030264.
A. Dikshit, N. Satyam, and B. Pradhan, “Estimation of Rainfall-Induced Landslides Using the TRIGRS Model,” Earth Syst. Environ., vol. 3, no. 3, pp. 575–584, Dec. 2019, doi: 10.1007/s41748-019-00125-w.
F. Liu et al., “Rock landslide early warning system combining slope stability analysis, two-stage monitoring, and case-based reasoning: a case study,” Bull. Eng. Geol. Environ., vol. 80, no. 11, pp. 8433–8451, Nov. 2021, doi: 10.1007/s10064-021-02461-6.
D. Sun, Q. Gu, H. Wen, S. Shi, C. Mi, and F. Zhang, “A Hybrid Landslide Warning Model Coupling Susceptibility Zoning and Precipitation,” Forests, vol. 13, no. 6, p. 827, May 2022, doi: 10.3390/f13060827.
A. L. van Natijne, R. C. Lindenbergh, and T. A. Bogaard, “Machine Learning: New Potential for Local and Regional Deep-Seated Landslide Nowcasting,” Sensors, vol. 20, no. 5, p. 1425, Mar. 2020, doi: 10.3390/s20051425.
P. S. Thapa and B. R. Adhikari, “Development of community-based landslide early warning system in the earthquake-affected areas of Nepal Himalaya,” J. Mt. Sci., vol. 16, no. 12, pp. 2701–2713, Dec. 2019, doi: 10.1007/s11629-019-5586-5.
Y. Zhang, J. Tang, Z. He, J. Tan, and C. Li, “A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide,” Nat. Hazards, vol. 105, no. 1, pp. 783–813, Jan. 2021, doi: 10.1007/s11069-020-04337-6.
J.-Y. Ho, C.-H. Liu, W.-B. Chen, C.-H. Chang, and K. T. Lee, “Using ensemble quantitative precipitation forecast for rainfall-induced shallow landslide predictions,” Geosci. Lett., vol. 9, no. 1, p. 22, Dec. 2022, doi: 10.1186/s40562-022-00231-0.
J. Uwihirwe, M. Hrachowitz, and T. Bogaard, “Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda,” Nat. Hazards Earth Syst. Sci., vol. 22, no. 5, pp. 1723–1742, May 2022, doi: 10.5194/nhess-22-1723-2022.
S. Moradi, T. Heinze, J. Budler, T. Gunatilake, A. Kemna, and J. A. Huisman, “Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability,” Land, vol. 10, no. 4, p. 423, Apr. 2021, doi: 10.3390/land10040423.
L. Piciullo, D. Tiranti, G. Pecoraro, J. M. Cepeda, and M. Calvello, “Standards for the performance assessment of territorial landslide early warning systems,” Landslides, vol. 17, no. 11, pp. 2533–2546, Nov. 2020, doi: 10.1007/s10346-020-01486-4.
L. Han, J. Zhang, Y. Zhang, and Q. Lang, “Applying a Series and Parallel Model and a Bayesian Networks Model to Produce Disaster Chain Susceptibility Maps in the Changbai Mountain area, China,” Water, vol. 11, no. 10, p. 2144, Oct. 2019, doi: 10.3390/w11102144.
K. Wang and S. Zhang, “Rainfall-induced landslides assessment in the Fengjie County, Three-Gorge reservoir area, China,” Nat. Hazards, vol. 108, no. 1, pp. 451–478, Aug. 2021, doi: 10.1007/s11069-021-04691-z.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iswanto Suwarno, Muhammad Ahmad Baballe , Irfan Ahmad , Erwin L. Rimban , Mohammad Aljanabi , Robbi Rahim , Anggia Arif , Nia Maharani Raharja , Nurhayati Nurhayati

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.