Implementation of Web-Based System for Pigeon Post Competition in Galaxy Community
DOI:
https://doi.org/10.59247/jppmi.v1i12.56Keywords:
Pigeons Post, Pigeons Post Competition, Web-Based System, System of CompetitionAbstract
Pigeons Post are sophisticated birds with a good memory, navigation skills and an instinct to return to the nest after a long absence. Over time, has become popular as a pet, and a sport. In Indonesia, the Pigeons Post championship is legally protected through POMSI (in Bahasa Indonesia: Perkumpulan Olahraga Merpati Pos Seluruh Indonesia), held by local, and national communities, this hobby continues to grow. This competition technique is that participants register, bring the bird to a place have prepared, and fly it with applicable conditions. Many competition participants cause problems because the conventional processes lead to data entry errors, flight speed calculations, lost registrations, and human errors. This community service activity is to help, and facilitate the implementation system of the Pigeons Post competition in the community - POMP Galaxy (in Bahasa Indonesia: Perhimpunan Olahraga Merpati Pos). The results prove that the system has been created to facilitate the committee in managing and improving the competition's judging accuracy. This system is tested using alpha testing, which shows all features are running well. On the other hand, the acceptance test results through the questionnaire resulted in a response percentage of 89.99%, with the system's calculation criteria strongly agreeing.
References
L. Magalhães Pinto, F. de Assis Bezerra Neto, M. Araújo Paulo de Medeiros, D. L. Zuza Alves, and G. Maranhão Chaves, “Candida species isolated from pigeon (Columbia livia) droppings may express virulence factors and resistance to azoles,” Vet. Microbiol., vol. 235, pp. 43–52, Aug. 2019, doi: 10.1016/j.vetmic.2019.05.022.
C. Griffiths, I. Schiffner, E. Price, M. Charnell-Hughes, D. Kishkinev, and R. A. Holland, “Repeated training of homing pigeons reveals age-dependent idiosyncrasy and visual landmark use,” Anim. Behav., vol. 177, pp. 159–170, Jul. 2021, doi: 10.1016/j.anbehav.2021.05.004.
V. J. Coppola and V. P. Bingman, “c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task,” Neurobiol. Aging, vol. 87, pp. 98–107, Mar. 2020, doi: 10.1016/j.neurobiolaging.2019.11.019.
E. M. O’Donoghue, M. B. Broschard, J. H. Freeman, and E. A. Wasserman, “The Lords of the Rings: People and pigeons take different paths mastering the concentric-rings categorization task,” Cognition, vol. 218, p. 104920, Jan. 2022, doi: 10.1016/j.cognition.2021.104920.
X. Chen, J. Wang, Q. Wei, M. Hanif, E. Li, and S. Zhang, “Morphology and cytochemical patterns of peripheral blood cells in domestic pigeon (Columba livia),” Tissue Cell, vol. 59, pp. 10–17, Aug. 2019, doi: 10.1016/j.tice.2019.05.003.
D. E. Friesem, N. Teutsch, M. Weinstein-Evron, R. Shimelmitz, and R. Shahack-Gross, “Identification of fresh and burnt bat guano and pigeon droppings in Eastern Mediterranean karstic cave sites based on micromorphological and chemical characteristics,” Quat. Sci. Rev., vol. 274, p. 107238, Dec. 2021, doi: 10.1016/j.quascirev.2021.107238.
X. González-Gómez, J. Simal-Gándara, L. E. Fidalgo Alvarez, A. M. López-Beceiro, M. Pérez-López, and E. Martínez-Carballo, “Non-invasive biomonitoring of organic pollutants using feather samples in feral pigeons (Columba livia domestica),” Environ. Pollut., vol. 267, p. 115672, Dec. 2020, doi: 10.1016/j.envpol.2020.115672.
V. J. Coppola and V. P. Bingman, “Aging is associated with larger brain mass and volume in homing pigeons (Columba livia),” Neurosci. Lett., vol. 698, pp. 39–43, Apr. 2019, doi: 10.1016/j.neulet.2019.01.007.
K. H. Rogers, D. Arranz-Solís, J. P. J. Saeij, S. Lewis, and A. Mete, “Sarcocystis calchasi and other Sarcocystidae detected in predatory birds in California, USA,” Int. J. Parasitol. Parasites Wildl., vol. 17, pp. 91–99, Apr. 2022, doi: 10.1016/j.ijppaw.2021.12.008.
S. Eggert, M. Thali, and W. Schweitzer, “Bird hunting is to go where the birds are: Alleged single lethal firearm shot to a pigeon in a suburban region,” J. Forensic Radiol. Imaging, vol. 19, p. 100339, Dec. 2019, doi: 10.1016/j.jofri.2019.100339.
J.-S. Zhao, J. Zhang, Y. Zhao, Z. Zhang, and P. Godefroit, “Data of feather recovering performance of birds and micro structure of pigeons’ feathers,” Data Br., vol. 29, p. 105100, Apr. 2020, doi: 10.1016/j.dib.2019.105100.
S. H. Hong et al., “Levels and profiles of perfluorinated alkyl acids in liver tissues of birds with different habitat types and trophic levels from an urbanized coastal region of South Korea,” Sci. Total Environ., vol. 806, p. 151263, Feb. 2022, doi: 10.1016/j.scitotenv.2021.151263.
M. C. K. Soh, R. Y. T. Pang, B. X. K. Ng, B. P. Y.-H. Lee, A. H. B. Loo, and K. B. H. Er, “Restricted human activities shift the foraging strategies of feral pigeons (Columba livia) and three other commensal bird species,” Biol. Conserv., vol. 253, p. 108927, Jan. 2021, doi: 10.1016/j.biocon.2020.108927.
R. Zhang et al., “Molecular characterization and pathogenesis of H9N2 avian influenza virus isolated from a racing pigeon,” Vet. Microbiol., vol. 246, p. 108747, Jul. 2020, doi: 10.1016/j.vetmic.2020.108747.
H. M. Salem et al., “Morphological and molecular characterization of Ascaridia columbae in the domestic pigeon (Columba livia domestica) and the assessment of its immunological responses,” Poult. Sci., vol. 101, no. 2, p. 101596, Feb. 2022, doi: 10.1016/j.psj.2021.101596.
A. Asghari, J. Sadraei, M. Pirestani, and I. Mohammadpour, “First molecular identification and subtype distribution of Blastocystis sp. isolated from hooded crows (Corvus cornix) and pigeons (Columba livia) in Tehran Province, Iran,” Comp. Immunol. Microbiol. Infect. Dis., vol. 62, pp. 25–30, Feb. 2019, doi: 10.1016/j.cimid.2018.11.013.
A. Gagliardo, E. Pollonara, and M. Wikelski, “Pigeons remember visual landmarks after one release and rely upon them more if they are anosmic,” Anim. Behav., vol. 166, pp. 85–94, Aug. 2020, doi: 10.1016/j.anbehav.2020.05.009.
A. Gagliardo et al., “GPS-profiling of retrograde navigational impairments associated with hippocampal lesion in homing pigeons,” Behav. Brain Res., vol. 412, p. 113408, Aug. 2021, doi: 10.1016/j.bbr.2021.113408.
H. M. Salem et al., “The prevalence and intensity of external parasites in domestic pigeons (Columba livia domestica) in Egypt with special reference to the role of deltamethrin as insecticidal agent,” Saudi J. Biol. Sci., Oct. 2021, doi: 10.1016/j.sjbs.2021.10.042.
H. Badr et al., “Investigation of many bacterial and viral infections circulating in pigeons showing nervous symptoms,” Saudi J. Biol. Sci., Jan. 2022, doi: 10.1016/j.sjbs.2022.01.023.
D. García-Gallardo, F. Aguilar Guevara, S. Moreno, M. Hernández, and C. Carpio, “Evidence of non-circadian timing in a low response-cost daily Time-Place Learning task with pigeons Columba Livia,” Behav. Processes, vol. 168, p. 103942, Nov. 2019, doi: 10.1016/j.beproc.2019.103942.
C. Zhong et al., “DL-methionine and DL-methionyl-DL-methionine increase intestinal development and activate Wnt/β-catenin signaling activity in domestic pigeons (Columba livia),” Poult. Sci., vol. 101, no. 3, p. 101644, Mar. 2022, doi: 10.1016/j.psj.2021.101644.
S. Sánchez-Díez et al., “A rapid test for the environmental detection of pigeon antigen,” Sci. Total Environ., vol. 788, p. 147789, Sep. 2021, doi: 10.1016/j.scitotenv.2021.147789.
D. García-Gallardo, F. Aguilar Guevara, C. Canales, S. Moreno, and C. Carpio, “Effects of variable durations of food availability on interval time-place learning with pigeons Columba Livia,” Behav. Processes, vol. 179, p. 104192, Oct. 2020, doi: 10.1016/j.beproc.2020.104192.
J. S. Wen, Q. Q. Xu, W. Y. Zhao, C. H. Hu, X. T. Zou, and X. Y. Dong, “Effects of early weaning on intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia),” Poult. Sci., vol. 101, no. 2, p. 101613, Feb. 2022, doi: 10.1016/j.psj.2021.101613.
Q. Xu, S. Miao, H. Jian, X. Zou, and X. Dong, “Research Note: Morphology and immune function development of the jejunum and ileum in squab pigeons (Columba livia),” Poult. Sci., vol. 101, no. 1, p. 101529, Jan. 2022, doi: 10.1016/j.psj.2021.101529.
D. Giunchi, N. Mucci, D. Bigi, C. Mengoni, and N. E. Baldaccini, “Feral pigeon populations: their gene pool and links with local domestic breeds,” Zoology, vol. 142, p. 125817, Oct. 2020, doi: 10.1016/j.zool.2020.125817.
M. Sánchez-Ortiz, M. J. Cruz, S. Sánchez-Díez, A. Villar, I. Ojanguren, and X. Muñoz, “Immunomodulatory effect of pigeon serum in an acute and chronic murine model of bird fanciers lung,” Environ. Res., vol. 182, p. 108981, Mar. 2020, doi: 10.1016/j.envres.2019.108981.
S. Dehghani Nazhvani, F. Etemadi, M. Mohammadi, and F. Dehghani Nazhvani, “Humeral fracture treatment in pigeons by bone pins made from ovine and canine bones,” Heliyon, vol. 5, no. 11, p. e02679, Nov. 2019, doi: 10.1016/j.heliyon.2019.e02679.
S. S. Mirpourian, N. Sharifi, F. Talazadeh, R. A. Jafari, and M. Ghorbanpoor, “Isolation, molecular identification, and phylogenetic evaluation of Cryptococcus neoformans isolated from pigeon lofts, Psittaciformes, and Passeriformes in Ahvaz, Iran,” Comp. Immunol. Microbiol. Infect. Dis., vol. 76, p. 101618, Jun. 2021, doi: 10.1016/j.cimid.2021.101618.
M. R. Loiko et al., “Novel Gyrovirus genomes recovered from free-living pigeons in Southern Brazil,” Virology, vol. 548, pp. 132–135, Sep. 2020, doi: 10.1016/j.virol.2020.07.002.
A. M. Madsen, J. K. White, J. L. Nielsen, M. E. Keskin, K. Tendal, and M. W. Frederiksen, “A cross sectional study on airborne inhalable microorganisms, endotoxin, and particles in pigeon coops – Risk assessment of exposure,” Environ. Res., vol. 204, p. 112404, Mar. 2022, doi: 10.1016/j.envres.2021.112404.
M. M. Attia, N. Yehia, M. Mohamed Soliman, M. Shukry, M. T. El-Saadony, and H. M. Salem, “Evaluation of the antiparasitic activity of the chitosan-silver nanocomposites in the treatment of experimentally infested pigeons with Pseudolynchia canariensis,” Saudi J. Biol. Sci., Oct. 2021, doi: 10.1016/j.sjbs.2021.10.067.
S. M. Soliman, M. M. Attia, M. S. Al-Harbi, A. M. Saad, M. T. El-Saadony, and H. M. Salem, “Low host specificity of Hippobosca equina infestation in different domestic animals and pigeon,” Saudi J. Biol. Sci., Nov. 2021, doi: 10.1016/j.sjbs.2021.11.050.
I. Brito, L. R. G. Britto, and E. A. M. Ferrari, “Retrieval of contextual aversive memory and induction of Zenk expression in the hippocampus of pigeons,” Brain Res. Bull., vol. 153, pp. 341–349, Nov. 2019, doi: 10.1016/j.brainresbull.2019.09.013.
F. Kano, T. Sasaki, and D. Biro, “Collective attention in navigating homing pigeons: group size effect and individual differences,” Anim. Behav., vol. 180, pp. 63–80, Oct. 2021, doi: 10.1016/j.anbehav.2021.08.004.
F. Angelier, “Pigeons in the sun: Thermal constraints of eumelanic plumage in the rock pigeon (Columba livia),” J. Therm. Biol., vol. 90, p. 102601, May 2020, doi: 10.1016/j.jtherbio.2020.102601.
H. J. Keiluhu, M. Z. Pangau-Adam, H. K. Maury, and M. Waltert, “Effects of anthropogenic disturbance on a Victoria crowned pigeon Goura victoria population in northern Papua, Indonesia,” J. Asia-Pacific Biodivers., vol. 12, no. 4, pp. 493–497, Dec. 2019, doi: 10.1016/j.japb.2019.07.007s.
F. Jiguet, L. Sunnen, A.-C. Prévot, and K. Princé, “Urban pigeons losing toes due to human activities,” Biol. Conserv., vol. 240, p. 108241, Dec. 2019, doi: 10.1016/j.biocon.2019.108241.
S. Wang, Q. Ma, L. Qian, M. Zhao, Z. Wang, and L. Shi, “Encoding Model for Continuous Motion-sensitive Neurons in the Intermediate and Deep Layers of the Pigeon Optic Tectum,” Neuroscience, Jan. 2022, doi: 10.1101/2021.04.24.441242.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dhanar Intan Surya Saputra, Yudhistira Janice Al Sava, Yusmedi Nurfaizal , Didit Suhartono , Sitaresmi Wahyu Handani

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.